ZoomingRotor.scala:125 executed in 0.14 seconds (0.000 gc):

    val outerMask = innerMask.map(x => 1 - x)
    var style: VisualNetwork = new VisualStyleNetwork(
      styleLayers = List(
        VGG19.VGG19_1b2,
        VGG19.VGG19_1c1,
        VGG19.VGG19_1c2,
        VGG19.VGG19_1c3,
        VGG19.VGG19_1c4,
        VGG19.VGG19_1d1,
        VGG19.VGG19_1d2,
        VGG19.VGG19_1d3,
        VGG19.VGG19_1d4
      ),
      styleModifiers = List(
        new MomentMatcher().scale(Math.pow(2, -enhancementCoeff * 2)),
        new GramMatrixEnhancer().setMinMax(-5, 5).scale(Math.pow(2, enhancementCoeff * 2))
      ).map(_.withMask(outerMask.addRef())),
      styleUrls = styles,
      magnification = magnification,
      viewLayer = dims => getKaleidoscope(dims.toArray)
    )
    if (innerCoeff > 0) style = style.asInstanceOf[VisualStyleNetwork].withContent(
      contentLayers = List(
        VGG19.VGG19_0a
      ), contentModifiers = List(
        new ContentMatcher().withMask(innerMask.addRef()).scale(innerCoeff)
      ))
    style
Logging
THREADS = 64
DEFAULT_TILE_SIZE = 1200
Initialized ArtSettings = {
"defaultTileSize" : 1200
}

Returns

    VisualStyleNetwork(List(VGG19_1b2, VGG19_1c1, VGG19_1c2, VGG19_1c3, VGG19_1c4, VGG19_1d1, VGG19_1d2, VGG19_1d3, VGG19_1d4),List(com.simiacryptus.mindseye.art.VisualModifier$5@4c00499b, com.simiacryptus.mindseye.art.VisualModifier$5@15461579),List(),WrappedArray(http://examples.deepartist.org/TextureTiledRotor/f5fd9f51-02a1-4da1-ba5a-6968b9fd9521/etc/background-biology-blue-1426718.jpg),Float,com.simiacryptus.mindseye.art.examples.ZoomingRotor$$Lambda$420/1076278582@4985c1cf,1400,64,1,10000,5.0E8,4.0)

ZoomingRotor.scala:107 executed in 0.00 seconds (0.000 gc):

    new BasicOptimizer {
      override val trainingMinutes: Int = 90
      override val trainingIterations: Int = 10
      override val maxRate = 1e9
  
      override def trustRegion(layer: Layer): TrustRegion = null
  
      override def lineSearchFactory: LineSearchStrategy = {
        super.lineSearchFactory
      }
  
      override def renderingNetwork(dims: Seq[Int]) = getKaleidoscope(dims.toArray)
    }

Returns

    {
      "trainingMinutes" : 90,
      "trainingIterations" : 10,
      "maxRate" : 1.0E9
    }

Subreport: Optimization