Iteration 1 Iteration 1

Code from BasicOptimizer.scala:88 executed in 3975.81 seconds (24.482 gc):

    val lineSearchInstance: LineSearchStrategy = lineSearchFactory
    val trainer = new IterativeTrainer(trainable)
    trainer.setOrientation(orientation())
    trainer.setMonitor(new TrainingMonitor() {
      override def clear(): Unit = trainingMonitor.clear()
  
      override def log(msg: String): Unit = {
        trainingMonitor.log(msg)
        BasicOptimizer.this.log(msg)
      }
  
      override def onStepFail(currentPoint: Step): Boolean = {
        BasicOptimizer.this.onStepFail(trainable.addRef().asInstanceOf[Trainable], currentPoint)
      }
  
      override def onStepComplete(currentPoint: Step): Unit = {
        if (0 < logEvery && (0 == currentPoint.iteration % logEvery || currentPoint.iteration < logEvery)) {
          val image = currentImage()
          timelineAnimation += image
          val caption = "Iteration " + currentPoint.iteration
          out.p(caption + "\n" + out.jpg(image, caption))
        }
        BasicOptimizer.this.onStepComplete(trainable.addRef().asInstanceOf[Trainable], currentPoint)
        trainingMonitor.onStepComplete(currentPoint)
        super.onStepComplete(currentPoint)
      }
    })
    trainer.setTimeout(trainingMinutes, TimeUnit.MINUTES)
    trainer.setMaxIterations(trainingIterations)
    trainer.setLineSearchFactory((_: CharSequence) => lineSearchInstance)
    trainer.setTerminateThreshold(java.lang.Double.NEGATIVE_INFINITY)
    val result = trainer.run.asInstanceOf[lang.Double]
    trainer.freeRef()
    result

Logging:

    Reset training subject: 3317596326537
    Reset training subject: 3599250417496
    Adding measurement 2e115978 to history. Total: 0
    LBFGS Accumulation History: 1 points
    Constructing line search parameters: GD+Trust
    th(0)=57.24477259069681;dx=-3.222674493773137E-7
    New Minimum: 57.24477259069681 > 57.24477205425501
    WOLFE (weak): th(2.154434690031884)=57.24477205425501; dx=-3.2633746368045773E-7 evalInputDelta=5.364418029785156E-7
    New Minimum: 57.24477205425501 > 57.24477117881179
    WOLFE (weak): th(4.308869380063768)=57.24477117881179; dx=-3.188041306588622E-7 evalInputDelta=1.4118850231170654E-6
    New Minimum: 57.24477117881179 > 57.244764890521765
    WOLFE (weak): th(12.926608140191302)=57.244764890521765; dx=-3.179587032284555E-7 evalInputDelta=7.700175046920776E-6
    New Minimum: 57.244764890521765 > 57.24474003538489
    WOLFE (weak): th(51.70643256076521)=57.24474003538489; dx=-3.144701465818904E-7 evalInputDelta=3.255531191825867E-5
    New Minimum: 57.24474003538489 > 57.24461071565747
    WOLFE (weak): th(258.53216280382605)=57.24461071565747; dx=-3.147232631745604E-7 evalInputDelta=1.6187503933906555E-4
    New Minimum: 57.24461071565747 > 57.24380461499095
    WOLFE (weak): th(1551.1929768229563)=57.24380461499095; dx=-3.209118422849624E-7 evalInputDelta=9.679757058620453E-4
    New Minimum: 57.24380461499095 > 57.23800292611122
    WOLFE (weak): th(10858.350837760694)=57.23800292611122; dx=-3.1786444232227717E-7 evalInputDelta=0.0067696645855903625
    New Minimum: 57.23800292611122 > 57.19067807495594
    WOLFE (weak): th(86866.80670208555)=57.19067807495594; dx=-3.195047695182269E-7 evalInputDelta=0.05409451574087143
    New Minimum: 57.19067807495594 > 56.76281597837806
    WOLFE (weak): th(781801.26031877)=56.76281597837806; dx=-3.080557468086231E-7 evalInputDelta=0.4819566123187542
    New Minimum: 56.76281597837806 > 53.05505678802729
    END: th(7818012.6031877)=53.05505678802729; dx=-2.1391524575635416E-7 evalInputDelta=4.189715802669525
    Fitness changed from 57.24477259069681 to 53.05505678802729
    Iteration 1 complete. Error: 53.05505678802729 Total: 3971.3633; Orientation: 0.3258; Line Search: 3121.2282
    <a id="p-3"></a>Iteration 1
    <a id="p-2"></a>![Iteration 1](etc/f980872b-4046-42c3-8d1e-ba79d2203204.jpg)
    
    Final threshold in iteration 1: 53.05505678802729 (> -Infinity) after 3975.810s (< 1800.000s)
    

Returns:

    53.05505678802729