Iteration 1 Iteration 1

Code from BasicOptimizer.scala:88 executed in 2480.52 seconds (15.602 gc):

    val lineSearchInstance: LineSearchStrategy = lineSearchFactory
    val trainer = new IterativeTrainer(trainable)
    trainer.setOrientation(orientation())
    trainer.setMonitor(new TrainingMonitor() {
      override def clear(): Unit = trainingMonitor.clear()
  
      override def log(msg: String): Unit = {
        trainingMonitor.log(msg)
        BasicOptimizer.this.log(msg)
      }
  
      override def onStepFail(currentPoint: Step): Boolean = {
        BasicOptimizer.this.onStepFail(trainable.addRef().asInstanceOf[Trainable], currentPoint)
      }
  
      override def onStepComplete(currentPoint: Step): Unit = {
        if (0 < logEvery && (0 == currentPoint.iteration % logEvery || currentPoint.iteration < logEvery)) {
          val image = currentImage()
          timelineAnimation += image
          val caption = "Iteration " + currentPoint.iteration
          out.p(caption + "\n" + out.jpg(image, caption))
        }
        BasicOptimizer.this.onStepComplete(trainable.addRef().asInstanceOf[Trainable], currentPoint)
        trainingMonitor.onStepComplete(currentPoint)
        super.onStepComplete(currentPoint)
      }
    })
    trainer.setTimeout(trainingMinutes, TimeUnit.MINUTES)
    trainer.setMaxIterations(trainingIterations)
    trainer.setLineSearchFactory((_: CharSequence) => lineSearchInstance)
    trainer.setTerminateThreshold(java.lang.Double.NEGATIVE_INFINITY)
    val result = trainer.run.asInstanceOf[lang.Double]
    trainer.freeRef()
    result

Logging:

    Reset training subject: 5175139875550
    Reset training subject: 5368825205331
    Adding measurement 3208586c to history. Total: 0
    LBFGS Accumulation History: 1 points
    Constructing line search parameters: GD+Trust
    th(0)=16.342115446925163;dx=-8.38225163142015E-7
    New Minimum: 16.342115446925163 > 16.342112824320793
    WOLFE (weak): th(2.154434690031884)=16.342112824320793; dx=-8.469088344253367E-7 evalInputDelta=2.6226043701171875E-6
    New Minimum: 16.342112824320793 > 16.34210839867592
    WOLFE (weak): th(4.308869380063768)=16.34210839867592; dx=-8.258542671736102E-7 evalInputDelta=7.048249244689941E-6
    New Minimum: 16.34210839867592 > 16.34209442138672
    WOLFE (weak): th(12.926608140191302)=16.34209442138672; dx=-8.446361828521343E-7 evalInputDelta=2.1025538444519043E-5
    New Minimum: 16.34209442138672 > 16.34203127026558
    WOLFE (weak): th(51.70643256076521)=16.34203127026558; dx=-8.379378279111838E-7 evalInputDelta=8.417665958404541E-5
    New Minimum: 16.34203127026558 > 16.34169352054596
    WOLFE (weak): th(258.53216280382605)=16.34169352054596; dx=-8.251221887736883E-7 evalInputDelta=4.219263792037964E-4
    New Minimum: 16.34169352054596 > 16.33958339691162
    WOLFE (weak): th(1551.1929768229563)=16.33958339691162; dx=-8.297308155063719E-7 evalInputDelta=0.0025320500135421753
    New Minimum: 16.33958339691162 > 16.324400156736374
    WOLFE (weak): th(10858.350837760694)=16.324400156736374; dx=-8.31064998752032E-7 evalInputDelta=0.017715290188789368
    New Minimum: 16.324400156736374 > 16.200902938842773
    WOLFE (weak): th(86866.80670208555)=16.200902938842773; dx=-8.357871899623625E-7 evalInputDelta=0.14121250808238983
    New Minimum: 16.200902938842773 > 15.117803409695625
    END: th(781801.26031877)=15.117803409695625; dx=-7.46979424594882E-7 evalInputDelta=1.224312037229538
    Fitness changed from 16.342115446925163 to 15.117803409695625
    Iteration 1 complete. Error: 15.117803409695625 Total: 2478.0423; Orientation: 0.1729; Line Search: 1905.4090
    <a id="p-3"></a>Iteration 1
    <a id="p-2"></a>![Iteration 1](etc/3b6180e1-a5fc-45d5-9c72-9e9782ff7aeb.jpg)
    
    Final threshold in iteration 1: 15.117803409695625 (> -Infinity) after 2480.522s (< 1800.000s)
    

Returns:

    15.117803409695625