Code from BasicOptimizer.scala:75 executed in 66.43 seconds (1.430 gc):
val lineSearchInstance: LineSearchStrategy = lineSearchFactory
IterativeTrainer.wrap(trainable)
.setOrientation(orientation())
.setMonitor(new TrainingMonitor() {
override def clear(): Unit = trainingMonitor.clear()
override def log(msg: String): Unit = trainingMonitor.log(msg)
override def onStepFail(currentPoint: Step): Boolean = {
BasicOptimizer.this.onStepFail(trainable, currentPoint)
}
override def onStepComplete(currentPoint: Step): Unit = {
if (0 < logEvery && (0 == currentPoint.iteration % logEvery || currentPoint.iteration < logEvery)) {
val image = currentImage
timelineAnimation += image
val caption = "Iteration " + currentPoint.iteration
out.p(caption + "\n" + out.jpg(image, caption))
}
BasicOptimizer.this.onStepComplete(trainable, currentPoint)
trainingMonitor.onStepComplete(currentPoint)
super.onStepComplete(currentPoint)
}
})
.setTimeout(trainingMinutes, TimeUnit.MINUTES)
.setMaxIterations(trainingIterations)
.setLineSearchFactory((_: CharSequence) => lineSearchInstance)
.setTerminateThreshold(java.lang.Double.NEGATIVE_INFINITY)
.runAndFree
.asInstanceOf[lang.Double]
Reset training subject: 907969989106600
Reset training subject: 907971180225900
Adding measurement 3dee7142 to history. Total: 0
LBFGS Accumulation History: 1 points
Constructing line search parameters: GD+Trust
th(0)=-0.08693721890449524;dx=-7.164503541503615E-9
Armijo: th(2.154434690031884)=-0.08693721890449524; dx=-7.072449860355652E-9 evalInputDelta=0.0
Armijo: th(1.077217345015942)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(0.3590724483386473)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(0.08976811208466183)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(0.017953622416932366)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(0.002992270402822061)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
WOLFE (weak): th(4.2746720040315154E-4)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(0.0017098688016126062)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(0.001068668001007879)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
WOLFE (weak): th(7.480676007055152E-4)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
WOLFE (weak): th(9.083678008566971E-4)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(9.88517900932288E-4)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
WOLFE (weak): th(9.484428508944925E-4)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
WOLFE (weak): th(9.684803759133902E-4)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(9.78499138422839E-4)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(9.734897571681146E-4)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(9.709850665407525E-4)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(9.697327212270714E-4)=-0.08693721890449524; dx
...skipping 1892 bytes...
05620786075)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
WOLFE (weak): th(0.004694841505870746)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(0.0049556660339746764)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
WOLFE (weak): th(0.004825253769922711)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(0.004890459901948694)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(0.004857856835935703)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
WOLFE (weak): th(0.004841555302929207)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(0.004849706069432455)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(0.004845630686180831)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(0.004843592994555019)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
Armijo: th(0.004842574148742113)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
WOLFE (weak): th(0.00484206472583566)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
WOLFE (weak): th(0.004842319437288887)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
WOLFE (weak): th(0.0048424467930155)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
WOLFE (weak): th(0.004842510470878806)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
WOLFE (weak): th(0.004842542309810459)=-0.08693721890449524; dx=-7.072449831486047E-9 evalInputDelta=0.0
mu ~= nu (0.004842542309810459): th(0.0)=-0.08693721890449524
Fitness changed from -0.08693721890449524 to -0.08693721890449524
Static Iteration Total: 29.4259; Orientation: 0.0144; Line Search: 27.1541
Iteration 2 failed. Error: -0.08693721890449524
Previous Error: 0.0 -> -0.08693721890449524
Optimization terminated 2
Final threshold in iteration 2: -0.08693721890449524 (> -Infinity) after 66.433s (< 720.000s)
-0.08693721890449524