Code from BasicOptimizer.scala:75 executed in 48.57 seconds (0.898 gc):
val lineSearchInstance: LineSearchStrategy = lineSearchFactory
IterativeTrainer.wrap(trainable)
.setOrientation(orientation())
.setMonitor(new TrainingMonitor() {
override def clear(): Unit = trainingMonitor.clear()
override def log(msg: String): Unit = trainingMonitor.log(msg)
override def onStepFail(currentPoint: Step): Boolean = {
BasicOptimizer.this.onStepFail(trainable, currentPoint)
}
override def onStepComplete(currentPoint: Step): Unit = {
if (0 < logEvery && (0 == currentPoint.iteration % logEvery || currentPoint.iteration < logEvery)) {
val image = currentImage
timelineAnimation += image
val caption = "Iteration " + currentPoint.iteration
out.p(caption + "\n" + out.jpg(image, caption))
}
BasicOptimizer.this.onStepComplete(trainable, currentPoint)
trainingMonitor.onStepComplete(currentPoint)
super.onStepComplete(currentPoint)
}
})
.setTimeout(trainingMinutes, TimeUnit.MINUTES)
.setMaxIterations(trainingIterations)
.setLineSearchFactory((_: CharSequence) => lineSearchInstance)
.setTerminateThreshold(java.lang.Double.NEGATIVE_INFINITY)
.runAndFree
.asInstanceOf[lang.Double]
Reset training subject: 906078328745500
Reset training subject: 906079214299100
Adding measurement 4c5379f5 to history. Total: 0
LBFGS Accumulation History: 1 points
Constructing line search parameters: GD+Trust
th(0)=-0.2548050880432129;dx=-1.4451209760059008E-9
Armijo: th(2.154434690031884)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(1.077217345015942)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.3590724483386473)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.08976811208466183)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
WOLFE (weak): th(0.017953622416932366)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.0538608672507971)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.03590724483386473)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.02693043362539855)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.022442028021165458)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.020197825219048914)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
WOLFE (weak): th(0.01907572381799064)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.01963677451851978)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.019356249168255207)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.019215986493122922)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
WOLFE (weak): th(0.01914585515555678)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
WOLFE (weak): th(0.01918092082433985)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
WOLFE (weak): th(0.019198453658731386)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.019207220075927154)=-0.2548050880432129; dx=-1.438833069402729E-9 eva
...skipping 1619 bytes...
lInputDelta=0.0
Armijo: th(0.10344769539291596)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
WOLFE (weak): th(0.09310292585362437)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.09827531062327016)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
WOLFE (weak): th(0.09568911823844727)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.09698221443085872)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.09633566633465299)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
WOLFE (weak): th(0.09601239228655012)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.09617402931060155)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.09609321079857583)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.09605280154256297)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
Armijo: th(0.09603259691455654)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
WOLFE (weak): th(0.09602249460055333)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
WOLFE (weak): th(0.09602754575755493)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
WOLFE (weak): th(0.09603007133605573)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
WOLFE (weak): th(0.09603133412530614)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
WOLFE (weak): th(0.09603196551993134)=-0.2548050880432129; dx=-1.438833069402729E-9 evalInputDelta=0.0
mu ~= nu (0.09603196551993134): th(0.0)=-0.2548050880432129
Fitness changed from -0.2548050880432129 to -0.2548050880432129
Static Iteration Total: 22.3260; Orientation: 0.0074; Line Search: 20.3682
Iteration 2 failed. Error: -0.2548050880432129
Previous Error: 0.0 -> -0.2548050880432129
Optimization terminated 2
Final threshold in iteration 2: -0.2548050880432129 (> -Infinity) after 48.568s (< 720.000s)
-0.2548050880432129