Code from BasicOptimizer.scala:75 executed in 130.23 seconds (1.676 gc):
val lineSearchInstance: LineSearchStrategy = lineSearchFactory
IterativeTrainer.wrap(trainable)
.setOrientation(orientation())
.setMonitor(new TrainingMonitor() {
override def clear(): Unit = trainingMonitor.clear()
override def log(msg: String): Unit = trainingMonitor.log(msg)
override def onStepFail(currentPoint: Step): Boolean = {
BasicOptimizer.this.onStepFail(trainable, currentPoint)
}
override def onStepComplete(currentPoint: Step): Unit = {
if (0 < logEvery && (0 == currentPoint.iteration % logEvery || currentPoint.iteration < logEvery)) {
val image = currentImage
timelineAnimation += image
val caption = "Iteration " + currentPoint.iteration
out.p(caption + "\n" + out.jpg(image, caption))
}
BasicOptimizer.this.onStepComplete(trainable, currentPoint)
trainingMonitor.onStepComplete(currentPoint)
super.onStepComplete(currentPoint)
}
})
.setTimeout(trainingMinutes, TimeUnit.MINUTES)
.setMaxIterations(trainingIterations)
.setLineSearchFactory((_: CharSequence) => lineSearchInstance)
.setTerminateThreshold(java.lang.Double.NEGATIVE_INFINITY)
.runAndFree
.asInstanceOf[lang.Double]
Reset training subject: 909916543318900
Reset training subject: 909918806483100
Adding measurement 77e6f22d to history. Total: 0
LBFGS Accumulation History: 1 points
Constructing line search parameters: GD+Trust
th(0)=0.8952993452548981;dx=-2.8370482393025938E-8
Armijo: th(2.154434690031884)=0.8952993452548981; dx=-2.8370482199614014E-8 evalInputDelta=0.0
Armijo: th(1.077217345015942)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.3590724483386473)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.08976811208466183)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.017953622416932366)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.002992270402822061)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
WOLFE (weak): th(4.2746720040315154E-4)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
WOLFE (weak): th(0.0017098688016126062)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.0023510696022173336)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.00203046920191497)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
WOLFE (weak): th(0.001870169001763788)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
WOLFE (weak): th(0.001950319101839379)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.0019903941518771744)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.0019703566268582766)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.0019603378643488277)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
WOLFE (weak): th(0.0019553284830941034)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.0019578331737214656)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
WOLFE (weak): th(0.0019565808284077845)=0.8952993452548981; dx=-2.83
...skipping 1744 bytes...
=0.0
Armijo: th(0.01053870925536637)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
WOLFE (weak): th(0.009484838329829734)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.010011773792598051)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
WOLFE (weak): th(0.009748306061213893)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.009880039926905972)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.009814172994059933)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
WOLFE (weak): th(0.009781239527636914)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.009797706260848422)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.009789472894242668)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.009785356210939792)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
Armijo: th(0.009783297869288353)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
WOLFE (weak): th(0.009782268698462633)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
WOLFE (weak): th(0.009782783283875492)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
WOLFE (weak): th(0.009783040576581923)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
WOLFE (weak): th(0.009783169222935137)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
WOLFE (weak): th(0.009783233546111745)=0.8952993452548981; dx=-2.8370482393025938E-8 evalInputDelta=0.0
mu ~= nu (0.009783233546111745): th(0.0)=0.8952993452548981
Fitness changed from 0.8952993452548981 to 0.8952993452548981
Static Iteration Total: 58.3821; Orientation: 0.0309; Line Search: 53.7860
Iteration 2 failed. Error: 0.8952993452548981
Previous Error: 0.0 -> 0.8952993452548981
Optimization terminated 2
Final threshold in iteration 2: 0.8952993452548981 (> -Infinity) after 130.227s (< 720.000s)
0.8952993452548981