Code from BasicOptimizer.scala:75 executed in 244.63 seconds (2.274 gc):
val lineSearchInstance: LineSearchStrategy = lineSearchFactory
IterativeTrainer.wrap(trainable)
.setOrientation(orientation())
.setMonitor(new TrainingMonitor() {
override def clear(): Unit = trainingMonitor.clear()
override def log(msg: String): Unit = trainingMonitor.log(msg)
override def onStepFail(currentPoint: Step): Boolean = {
BasicOptimizer.this.onStepFail(trainable, currentPoint)
}
override def onStepComplete(currentPoint: Step): Unit = {
if (0 < logEvery && (0 == currentPoint.iteration % logEvery || currentPoint.iteration < logEvery)) {
val image = currentImage
timelineAnimation += image
val caption = "Iteration " + currentPoint.iteration
out.p(caption + "\n" + out.jpg(image, caption))
}
BasicOptimizer.this.onStepComplete(trainable, currentPoint)
trainingMonitor.onStepComplete(currentPoint)
super.onStepComplete(currentPoint)
}
})
.setTimeout(trainingMinutes, TimeUnit.MINUTES)
.setMaxIterations(trainingIterations)
.setLineSearchFactory((_: CharSequence) => lineSearchInstance)
.setTerminateThreshold(java.lang.Double.NEGATIVE_INFINITY)
.runAndFree
.asInstanceOf[lang.Double]
Reset training subject: 909284926342200
Reset training subject: 909289602739600
Adding measurement 5e45b0 to history. Total: 0
LBFGS Accumulation History: 1 points
Constructing line search parameters: GD+Trust
th(0)=0.4584881663322449;dx=-9.32459079145665E-9
Armijo: th(2.154434690031884)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
Armijo: th(1.077217345015942)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
Armijo: th(0.3590724483386473)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
Armijo: th(0.08976811208466183)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
Armijo: th(0.017953622416932366)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
Armijo: th(0.002992270402822061)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(4.2746720040315154E-4)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.0017098688016126062)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.0023510696022173336)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.0026716700025196972)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.002831970202670879)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.00291212030274647)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.0029521953527842657)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.0029722328778031635)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
Armijo: th(0.002982251640312612)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
Armijo: th(0.0029772422590578877)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.0029747375684305256)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.0029759899137442067)=0.4584881663322449; dx=-9
...skipping 1632 bytes...
54E-9 evalInputDelta=0.0
Armijo: th(0.01603225969143223)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.014429033722289009)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
Armijo: th(0.015230646706860619)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.014829840214574813)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
Armijo: th(0.015030243460717716)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
Armijo: th(0.014930041837646265)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.014879941026110538)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
Armijo: th(0.0149049914318784)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
Armijo: th(0.01489246622899447)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
Armijo: th(0.014886203627552504)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
Armijo: th(0.01488307232683152)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.01488150667647103)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.014882289501651276)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.014882680914241398)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.014882876620536459)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
WOLFE (weak): th(0.01488297447368399)=0.4584881663322449; dx=-9.307428148753954E-9 evalInputDelta=0.0
mu ~= nu (0.01488297447368399): th(0.0)=0.4584881663322449
Fitness changed from 0.4584881663322449 to 0.4584881663322449
Static Iteration Total: 113.0943; Orientation: 0.0610; Line Search: 104.5342
Iteration 2 failed. Error: 0.4584881663322449
Previous Error: 0.0 -> 0.4584881663322449
Optimization terminated 2
Final threshold in iteration 2: 0.4584881663322449 (> -Infinity) after 244.630s (< 1800.000s)
0.4584881663322449