Code from BasicOptimizer.scala:75 executed in 172.94 seconds (2.550 gc):
val lineSearchInstance: LineSearchStrategy = lineSearchFactory
IterativeTrainer.wrap(trainable)
.setOrientation(orientation())
.setMonitor(new TrainingMonitor() {
override def clear(): Unit = trainingMonitor.clear()
override def log(msg: String): Unit = trainingMonitor.log(msg)
override def onStepFail(currentPoint: Step): Boolean = {
BasicOptimizer.this.onStepFail(trainable, currentPoint)
}
override def onStepComplete(currentPoint: Step): Unit = {
if (0 < logEvery && (0 == currentPoint.iteration % logEvery || currentPoint.iteration < logEvery)) {
val image = currentImage
timelineAnimation += image
val caption = "Iteration " + currentPoint.iteration
out.p(caption + "\n" + out.jpg(image, caption))
}
BasicOptimizer.this.onStepComplete(trainable, currentPoint)
trainingMonitor.onStepComplete(currentPoint)
super.onStepComplete(currentPoint)
}
})
.setTimeout(trainingMinutes, TimeUnit.MINUTES)
.setMaxIterations(trainingIterations)
.setLineSearchFactory((_: CharSequence) => lineSearchInstance)
.setTerminateThreshold(java.lang.Double.NEGATIVE_INFINITY)
.runAndFree
.asInstanceOf[lang.Double]
Reset training subject: 916655114823200
Reset training subject: 916658242343600
Adding measurement 4562fe65 to history. Total: 0
LBFGS Accumulation History: 1 points
Constructing line search parameters: GD+Trust
th(0)=1.0656364858150482;dx=-6.902052599835338E-8
Armijo: th(2.154434690031884)=1.0656365007162094; dx=-6.89666284024962E-8 evalInputDelta=-1.4901161193847656E-8
Armijo: th(1.077217345015942)=1.0656364858150482; dx=-6.896662931233848E-8 evalInputDelta=0.0
Armijo: th(0.3590724483386473)=1.0656364858150482; dx=-6.89666294605581E-8 evalInputDelta=0.0
Armijo: th(0.08976811208466183)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
Armijo: th(0.017953622416932366)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
Armijo: th(0.002992270402822061)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(4.2746720040315154E-4)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
Armijo: th(0.0017098688016126062)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(0.001068668001007879)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(0.0013892684013102426)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(0.0015495686014614244)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
Armijo: th(0.0016297187015370152)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(0.0015896436514992198)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
Armijo: th(0.0016096811765181174)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(0.0015996624140086685)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(0.001604671795263393)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(0.0016071764858907552)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(0.0016084288312044363)=1.0656364
...skipping 1739 bytes...
-8 evalInputDelta=0.0
Armijo: th(0.008663743193684095)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(0.007797368874315685)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
Armijo: th(0.00823055603399989)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(0.008013962454157787)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
Armijo: th(0.008122259244078838)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
Armijo: th(0.008068110849118314)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(0.00804103665163805)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
Armijo: th(0.008054573750378182)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
Armijo: th(0.008047805201008116)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
Armijo: th(0.008044420926323084)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
Armijo: th(0.008042728788980567)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(0.008041882720309309)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(0.008042305754644938)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(0.008042517271812752)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(0.00804262303039666)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
WOLFE (weak): th(0.008042675909688613)=1.0656364858150482; dx=-6.896662950472473E-8 evalInputDelta=0.0
mu ~= nu (0.008042675909688613): th(0.0)=1.0656364858150482
Fitness changed from 1.0656364858150482 to 1.0656364858150482
Static Iteration Total: 78.5504; Orientation: 0.0618; Line Search: 72.3967
Iteration 2 failed. Error: 1.0656364858150482
Previous Error: 0.0 -> 1.0656364858150482
Optimization terminated 2
Final threshold in iteration 2: 1.0656364858150482 (> -Infinity) after 172.943s (< 1800.000s)
1.0656364858150482