Iteration 1 Iteration 1

Iteration 2 Iteration 2

Iteration 3 Iteration 3

Iteration 4 Iteration 4

Code from BasicOptimizer.scala:75 executed in 113.76 seconds (2.255 gc):

    val lineSearchInstance: LineSearchStrategy = lineSearchFactory
    IterativeTrainer.wrap(trainable)
      .setOrientation(orientation())
      .setMonitor(new TrainingMonitor() {
        override def clear(): Unit = trainingMonitor.clear()
  
        override def log(msg: String): Unit = trainingMonitor.log(msg)
  
        override def onStepFail(currentPoint: Step): Boolean = {
          BasicOptimizer.this.onStepFail(trainable, currentPoint)
        }
  
        override def onStepComplete(currentPoint: Step): Unit = {
          if (0 < logEvery && (0 == currentPoint.iteration % logEvery || currentPoint.iteration < logEvery)) {
            val image = currentImage
            timelineAnimation += image
            val caption = "Iteration " + currentPoint.iteration
            out.p(caption + "\n" + out.jpg(image, caption))
          }
          BasicOptimizer.this.onStepComplete(trainable, currentPoint)
          trainingMonitor.onStepComplete(currentPoint)
          super.onStepComplete(currentPoint)
        }
      })
      .setTimeout(trainingMinutes, TimeUnit.MINUTES)
      .setMaxIterations(trainingIterations)
      .setLineSearchFactory((_: CharSequence) => lineSearchInstance)
      .setTerminateThreshold(java.lang.Double.NEGATIVE_INFINITY)
      .runAndFree
      .asInstanceOf[lang.Double]

Logging:

    Reset training subject: 927468977330900
    Reset training subject: 927470163117000
    Adding measurement b1ec51d to history. Total: 0
    LBFGS Accumulation History: 1 points
    Constructing line search parameters: GD+Trust
    th(0)=2.8183161169290543;dx=-5.528599474640812E-6
    New Minimum: 2.8183161169290543 > 2.8183151111006737
    WOLFE (weak): th(2.154434690031884)=2.8183151111006737; dx=-5.5293816847087955E-6 evalInputDelta=1.0058283805847168E-6
    New Minimum: 2.8183151111006737 > 2.818314105272293
    WOLFE (weak): th(4.308869380063768)=2.818314105272293; dx=-5.5287501343687245E-6 evalInputDelta=2.0116567611694336E-6
    New Minimum: 2.818314105272293 > 2.8183096051216125
    WOLFE (weak): th(12.926608140191302)=2.8183096051216125; dx=-5.528487558622428E-6 evalInputDelta=6.511807441711426E-6
    New Minimum: 2.8183096051216125 > 2.818289138376713
    WOLFE (weak): th(51.70643256076521)=2.818289138376713; dx=-5.530344043472789E-6 evalInputDelta=2.697855234146118E-5
    New Minimum: 2.818289138376713 > 2.8181800730526447
    WOLFE (weak): th(258.53216280382605)=2.8181800730526447; dx=-5.5317494109036565E-6 evalInputDelta=1.3604387640953064E-4
    New Minimum: 2.8181800730526447 > 2.817503873258829
    WOLFE (weak): th(1551.1929768229563)=2.817503873258829; dx=-5.4236048184459226E-6 evalInputDelta=8.122436702251434E-4
    New Minimum: 2.817503873258829 > 2.8126597180962563
    WOLFE (weak): th(10858.350837760694)=2.8126597180962563; dx=-5.207579855711389E-6 evalInputDelta=0.005656398832798004
    Armijo: th(86866.80670208555)=2.819994941353798; dx=-3.1406272523436055E-6 evalInputDelta=-0.0016788244247436523
    New Minimum: 2.8126597180962563 > 2.8061675876379013
    END: th(48862.57876992312)=2.8061675876379013; dx=-4.020660887663124E-6 evalInputDelta=0.012148529291152954
    Fitness changed from 2.8183161169290543 to 2.8061675876379013
    Iteration 1 complete. Error: 2.8061675876379013 Total: 14.2359; Orientation: 0.0090; Line Search: 11.0806
    <a id="p-3"></a>Iteration 1
    <a id="p-2"></a>![Iteration 1](etc/f5ab0b16-7158-43f9-a30e-bcd9f691fc7f.jpg)
    
    Adding measurement 63

...skipping 9311 bytes...

    dx=-5.1329482789004E-4 evalInputDelta=0.0
    Armijo: th(2.329951576244104E-6)=2.8037286773324013; dx=-5.1329482789004E-4 evalInputDelta=0.0
    WOLFE (weak): th(2.0969564186196936E-6)=2.8037286773324013; dx=-5.1329482789004E-4 evalInputDelta=0.0
    Armijo: th(2.2134539974318987E-6)=2.8037286773324013; dx=-5.1329482789004E-4 evalInputDelta=0.0
    WOLFE (weak): th(2.155205208025796E-6)=2.8037286773324013; dx=-5.1329482789004E-4 evalInputDelta=0.0
    Armijo: th(2.1843296027288473E-6)=2.8037286773324013; dx=-5.1329482789004E-4 evalInputDelta=0.0
    Armijo: th(2.1697674053773216E-6)=2.8037286773324013; dx=-5.1329482789004E-4 evalInputDelta=0.0
    WOLFE (weak): th(2.1624863067015586E-6)=2.8037286773324013; dx=-5.1329482789004E-4 evalInputDelta=0.0
    Armijo: th(2.16612685603944E-6)=2.8037286773324013; dx=-5.1329482789004E-4 evalInputDelta=0.0
    Armijo: th(2.1643065813704992E-6)=2.8037286773324013; dx=-5.1329482789004E-4 evalInputDelta=0.0
    Armijo: th(2.163396444036029E-6)=2.8037286773324013; dx=-5.1329482789004E-4 evalInputDelta=0.0
    Armijo: th(2.162941375368794E-6)=2.8037286773324013; dx=-5.1329482789004E-4 evalInputDelta=0.0
    WOLFE (weak): th(2.162713841035176E-6)=2.8037286773324013; dx=-5.1329482789004E-4 evalInputDelta=0.0
    WOLFE (weak): th(2.1628276082019852E-6)=2.8037286773324013; dx=-5.1329482789004E-4 evalInputDelta=0.0
    WOLFE (weak): th(2.1628844917853895E-6)=2.8037286773324013; dx=-5.1329482789004E-4 evalInputDelta=0.0
    WOLFE (weak): th(2.1629129335770915E-6)=2.8037286773324013; dx=-5.1329482789004E-4 evalInputDelta=0.0
    WOLFE (weak): th(2.1629271544729427E-6)=2.8037286773324013; dx=-5.1329482789004E-4 evalInputDelta=0.0
    mu ~= nu (2.1629271544729427E-6): th(0.0)=2.8037286773324013
    Fitness changed from 2.8037286773324013 to 2.8037286773324013
    Static Iteration Total: 26.8755; Orientation: 0.0078; Line Search: 24.9175
    Iteration 6 failed. Error: 2.8037286773324013
    Previous Error: 0.0 -> 2.8037286773324013
    Optimization terminated 6
    Final threshold in iteration 6: 2.8037286773324013 (> -Infinity) after 113.758s (< 720.000s)
    

Returns:

    2.8037286773324013