1. SmoothStyle
  2. Resolution 600.0
  3. Resolution 1200.0
  4. Resolution 2400.0

SmoothStyle

Paints an image in the style of another using:
  1. PhotoSmooth-based content initialization
  2. Standard VGG16 layers
  3. Operators to match content and constrain and enhance style
  4. Progressive resolution increase

Code from SmoothStyle.scala:68 executed in 0.00 seconds (0.000 gc):

    () => {
      implicit val _ = log
      // First, basic configuration so we publish to our s3 site
      log.setArchiveHome(URI.create(s"s3://$s3bucket/${getClass.getSimpleName.stripSuffix("$")}/${log.getId}/"))
      log.onComplete(() => upload(log): Unit)
      // Fetch input images (user upload prompts) and display a rescaled copies
      log.p(log.jpg(ImageArtUtil.load(log, styleUrl, (maxResolution * Math.sqrt(magnification)).toInt), "Input Style"))
      log.p(log.jpg(ImageArtUtil.load(log, contentUrl, maxResolution), "Input Content"))
      val canvas = new AtomicReference[Tensor](null)
      // Execute the main process while registered with the site index
      val registration = registerWithIndexJPG(canvas.get())
      try {
        // Display an additional image inside the report itself
        withMonitoredJpg(() => canvas.get().toImage) {
          paint(contentUrl, content => {
            val fastPhotoStyleTransfer = FastPhotoStyleTransfer.fromZip(new ZipFile(Util.cacheFile(new URI(
              "https://simiacryptus.s3-us-west-2.amazonaws.com/photo_wct.zip"))))
            val style = Tensor.fromRGB(ImageArtUtil.load(log, styleUrl, minResolution))
            val wctRestyled = fastPhotoStyleTransfer.photoWCT(style, content)
            val topology = new SearchRadiusTopology(content).setSelfRef(true).setVerbose(true)
            var affinity = new RelativeAffinity(content, topology).setContrast(20).setGraphPower1(2).setMixing(0.1)
              .wrap((graphEdges: java.util.List[Array[Int]], innerResult: java.util.List[Array[Double]]) => adjust(graphEdges, innerResult, degree(innerResult), 0.2))
            new RasterSolver_Cuda().solve(topology, affinity, 1e-4).apply(wctRestyled)
          }, canvas, new VisualStyleContentNetwork(
            styleLayers = List(
              VGG16.VGG16_1a,
              VGG16.VGG16_1b1,
              VGG16.VGG16_1b2,
              VGG16.VGG16_1c1,
              VGG16.VGG16_1c2,
              VGG16.VGG16_1c3,
              VGG16.VGG16_1d1,
              VGG16.VGG16_1d2,
              VGG16.VGG16_1d3
            ),
            styleModifiers = List(
              // These two operators are a good combination for a vivid yet accurate style
              new GramMatrixEnhancer().setMinMax(-3,3),
              new MomentMatcher()
            ),
            styleUrl = List(styleUrl),
            contentLayers = List(
              // We use fewer layer to be a constraint, since the ContentMatcher operation defines
              // a stronger operation. Picking a mid-level layer ensures the match is somewhat
              // faithful to color, contains detail, and still accomidates local changes for style.
              VGG16.VGG16_1b2
            ),
            contentModifiers = List(
              // Standard content matching operator
              new ContentMatcher().scale(5e-1)
            ),
            magnification = magnification
          ), new BasicOptimizer {
            override val trainingMinutes: Int = 60
            override val trainingIterations: Int = 20
            override val maxRate = 1e9
          }, new GeometricSequence {
            override val min: Double = minResolution
            override val max: Double = maxResolution
            override val steps = SmoothStyle.this.steps
          }.toStream.map(_.round.toDouble))
        }
        null
      } finally {
        registration.foreach(_.stop()(s3client, ec2client))
      }
    }

Returns:

    <function0>

Input Style

Input Content

Resolution 600.0

Subreport: Optimization

Resolution 1200.0

Subreport: Optimization

Resolution 2400.0