Code from BasicOptimizer.scala:75 executed in 3621.81 seconds (41.854 gc):
val lineSearchInstance: LineSearchStrategy = lineSearchFactory
IterativeTrainer.wrap(trainable)
.setOrientation(orientation())
.setMonitor(new TrainingMonitor() {
override def clear(): Unit = trainingMonitor.clear()
override def log(msg: String): Unit = trainingMonitor.log(msg)
override def onStepFail(currentPoint: Step): Boolean = {
BasicOptimizer.this.onStepFail(trainable, currentPoint)
}
override def onStepComplete(currentPoint: Step): Unit = {
if (0 < logEvery && (0 == currentPoint.iteration % logEvery || currentPoint.iteration < logEvery)) {
val image = currentImage
timelineAnimation += image
val caption = "Iteration " + currentPoint.iteration
out.p(caption + "\n" + out.jpg(image, caption))
}
BasicOptimizer.this.onStepComplete(trainable, currentPoint)
trainingMonitor.onStepComplete(currentPoint)
super.onStepComplete(currentPoint)
}
})
.setTimeout(trainingMinutes, TimeUnit.MINUTES)
.setMaxIterations(trainingIterations)
.setLineSearchFactory((_: CharSequence) => lineSearchInstance)
.setTerminateThreshold(java.lang.Double.NEGATIVE_INFINITY)
.runAndFree
.asInstanceOf[lang.Double]
Reset training subject: 1515130907868100
Reset training subject: 1515196218304900
Adding measurement 37ccedbe to history. Total: 0
LBFGS Accumulation History: 1 points
Constructing line search parameters: GD+Trust
th(0)=6.819971298398388;dx=-1.3553924210788504E-7
Armijo: th(2.154434690031884)=6.819971298398388; dx=-1.3549236470806968E-7 evalInputDelta=0.0
Armijo: th(1.077217345015942)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.3590724483386473)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.08976811208466183)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.017953622416932366)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
WOLFE (weak): th(0.002992270402822061)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.010472946409877214)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.006732608406349637)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.004862439404585849)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.003927354903703955)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.0034598126532630075)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
WOLFE (weak): th(0.003226041528042534)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.0033429270906527708)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.0032844843093476524)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
WOLFE (weak): th(0.003255262918695093)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
WOLFE (weak): th(0.0032698736140213728)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.003277178961684513)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
WOLFE (weak): th(0.0032735262878529426)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
WOLFE
...skipping 1618 bytes...
758)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.017647250747646497)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
WOLFE (weak): th(0.01588252567288185)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.016764888210264173)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
WOLFE (weak): th(0.01632370694157301)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.01654429757591859)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.0164340022587458)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
WOLFE (weak): th(0.016378854600159407)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.016406428429452603)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.016392641514806003)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.016385748057482705)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
WOLFE (weak): th(0.016382301328821056)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.01638402469315188)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.016383163010986468)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.016382732169903762)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.01638251674936241)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
Armijo: th(0.01638240903909173)=6.819971298398388; dx=-1.354923647080278E-7 evalInputDelta=0.0
mu ~= nu (0.016382301328821056): th(0.0)=6.819971298398388
Fitness changed from 6.819971298398388 to 6.819971298398388
Static Iteration Total: 1640.7302; Orientation: 0.3143; Line Search: 1511.3073
Iteration 2 failed. Error: 6.819971298398388
Previous Error: 0.0 -> 6.819971298398388
Optimization terminated 2
Final threshold in iteration 2: 6.819971298398388 (> -Infinity) after 3621.805s (< 7200.000s)
6.819971298398388