BasicOptimizer.scala:89 executed in 325.25 seconds (4.802 gc):

    val lineSearchInstance: LineSearchStrategy = lineSearchFactory
    val trainer = new IterativeTrainer(trainable)
    trainer.setOrientation(orientation())
    trainer.setMonitor(new TrainingMonitor() {
      override def clear(): Unit = trainingMonitor.clear()
  
      override def log(msg: String): Unit = {
        trainingMonitor.log(msg)
        BasicOptimizer.this.log(msg)
      }
  
      override def onStepFail(currentPoint: Step): Boolean = {
        BasicOptimizer.this.onStepFail(trainable.addRef().asInstanceOf[Trainable], currentPoint)
      }
  
      override def onStepComplete(currentPoint: Step): Unit = {
        if (0 < logEvery && (0 == currentPoint.iteration % logEvery || currentPoint.iteration < logEvery)) {
          val image = currentImage()
          timelineAnimation += image
          val caption = "Iteration " + currentPoint.iteration
          out.p(caption + "\n" + out.jpg(image, caption))
        }
        BasicOptimizer.this.onStepComplete(trainable.addRef().asInstanceOf[Trainable], currentPoint)
        trainingMonitor.onStepComplete(currentPoint)
        super.onStepComplete(currentPoint)
      }
    })
    trainer.setTimeout(trainingMinutes, TimeUnit.MINUTES)
    trainer.setMaxIterations(trainingIterations)
    trainer.setLineSearchFactory((_: CharSequence) => lineSearchInstance)
    trainer.setTerminateThreshold(java.lang.Double.NEGATIVE_INFINITY)
    val result = trainer.run.asInstanceOf[lang.Double]
    trainer.freeRef()
    result
Logging
Reset training subject: 641567478354700
Reset training subject: 641573300886000
Adding measurement 2fee3f9e to history. Total: 0
LBFGS Accumulation History: 1 points
Constructing line search parameters: GD+Trust
th(0)=-71.31610123700145;dx=-1.2047397207741474E-6
Armijo: th(2.154434690031884)=-71.31610123700145; dx=-1.179969792147238E-6 evalInputDelta=0.0
Armijo: th(1.077217345015942)=-71.31610123700145; dx=-1.1802306215061434E-6 evalInputDelta=0.0
Armijo: th(0.3590724483386473)=-71.31610123700145; dx=-1.180308575959035E-6 evalInputDelta=0.0
Armijo: th(0.08976811208466183)=-71.31610123700145; dx=-1.1794541017323486E-6 evalInputDelta=0.0
Armijo: th(0.017953622416932366)=-71.31610123700145; dx=-1.1800629973582916E-6 evalInputDelta=0.0
WOLFE (weak): th(0.002992270402822061)=-71.31610123700145; dx=-1.1800248859842253E-6 evalInputDelta=0.0
Armijo: th(0.010472946409877214)=-71.31610123700145; dx=-1.1803492203291102E-6 evalInputDelta=0.0
Armijo: th(0.006732608406349637)=-71.31610123700145; dx=-1.180202200825926E-6 evalInputDelta=0.0
WOLFE (weak): th(0.004862439404585849)=-71.31610123700145; dx=-1.1804043922719653E-6 evalInputDelta=0.0
WOLFE (weak): th(0.005797523905467743)=-71.31610123700145; dx=-1.1800478020389386E-6 evalInputDelta=0.0
Armijo: th(0.00626506615590869)=-71.31610123700145; dx=-1.180224736666441E-6 evalInputDelta=0.0
Armijo: th(0.006031295030688217)=-71.31610123700145; dx=-1.1803061765233947E-6 evalInputDelta=0.0
Armijo: th(0.00591440946807798)=-71.31610123700145; dx=-1.1803286006078022E-6 evalInputDelta=0.0
WOLFE (weak): th(0.0058559666867728614)=-71.31610123700145; dx=-1.1801517869086372E-6 evalInputDelta=0.0
WOLFE (weak): th(0.005885188077425421)=-71.31610123700145; dx=-1.1803725337853265E-6 evalInputDelta=0.0
Armijo: th(0.005899798772751701)=-71.31610123700145; dx=-1.1800727557617243E-6 evalInputDelta=0.0
WOLFE (weak): th(0.00589249342508856)=-71.31610123700145; dx=-1.1803622878407046E-6 evalInputDelta=0.0
WOLFE (weak): th(0.0058961460989201304)=-71.31610123700145; dx=-1.180043588089867E-6 evalInputDelta=0.0
Armijo: th(0.0058979724358359156)=-71.31610123700145; dx=-1.1795746962642146E-6 evalInputDelta=0.0
WOLFE (weak): th(0.005897059267378023)=-71.31610123700145; dx=-1.1802245639588417E-6 evalInputDelta=0.0
WOLFE (weak): th(0.00589751585160697)=-71.31610123700145; dx=-1.1797199430058474E-6 evalInputDelta=0.0
WOLFE (weak): th(0.005897744143721443)=-71.31610123700145; dx=-1.1798607295027006E-6 evalInputDelta=0.0
WOLFE (weak): th(0.005897858289778679)=-71.31610123700145; dx=-1.1803443937960966E-6 evalInputDelta=0.0
Armijo: th(0.005897915362807297)=-71.31610123700145; dx=-1.1804056861791757E-6 evalInputDelta=0.0
mu ~= nu (0.005897858289778679): th(0.0)=-71.31610123700145
Fitness changed from -71.31610123700145 to -71.31610123700145
Static Iteration Total: 171.4887; Orientation: 0.1510; Line Search: 153.9638
Iteration 1 failed. Error: -71.31610123700145
Previous Error: 0.0 -> -71.31610123700145
Retrying iteration 1
Reset training subject: 641738967204400
Adding measurement 32519d50 to history. Total: 0
LBFGS Accumulation History: 1 points
th(0)=-71.31610123700145;dx=-1.2044695220340167E-6
WOLFE (weak): th(0.012706611976447665)=-71.31610123700145; dx=-1.1800626675772514E-6 evalInputDelta=0.0
WOLFE (weak): th(0.02541322395289533)=-71.31610123700145; dx=-1.1795606423491646E-6 evalInputDelta=0.0
Armijo: th(0.07623967185868599)=-71.31610123700145; dx=-1.1798690739762458E-6 evalInputDelta=0.0
Armijo: th(0.05082644790579066)=-71.31610123700145; dx=-1.1799055302197848E-6 evalInputDelta=0.0
Armijo: th(0.038119835929342996)=-71.31610123700145; dx=-1.1799746661844524E-6 evalInputDelta=0.0
Armijo: th(0.03176652994111916)=-71.31610123700145; dx=-1.1796905018667685E-6 evalInputDelta=0.0
WOLFE (weak): th(0.028589876947007247)=-71.31610123700145; dx=-1.1802805006375972E-6 evalInputDelta=0.0
Armijo: th(0.030178203444063204)=-71.31610123700145; dx=-1.180052243750066E-6 evalInputDelta=0.0
WOLFE (weak): th(0.029384040195535227)=-71.31610123700145; dx=-1.1800601443704172E-6 evalInputDelta=0.0
Armijo: th(0.029781121819799215)=-71.31610123700145; dx=-1.1800713264617978E-6 evalInputDelta=0.0
Armijo: th(0.02958258100766722)=-71.31610123700145; dx=-1.180149767524141E-6 evalInputDelta=0.0
WOLFE (weak): th(0.029483310601601226)=-71.31610123700145; dx=-1.1803213329032406E-6 evalInputDelta=0.0
Armijo: th(0.029532945804634225)=-71.31610123700145; dx=-1.1802616648940456E-6 evalInputDelta=0.0
Armijo: th(0.029508128203117726)=-71.31610123700145; dx=-1.1799005443840307E-6 evalInputDelta=0.0
WOLFE (weak): th(0.029495719402359476)=-71.31610123700145; dx=-1.1795321683288014E-6 evalInputDelta=0.0
Armijo: th(0.0295019238027386)=-71.31610123700145; dx=-1.1801782120253706E-6 evalInputDelta=0.0
Armijo: th(0.02949882160254904)=-71.31610123700145; dx=-1.1800445142775727E-6 evalInputDelta=0.0
Armijo: th(0.029497270502454258)=-71.31610123700145; dx=-1.180155003609673E-6 evalInputDelta=0.0
Armijo: th(0.029496494952406867)=-71.31610123700145; dx=-1.1801482255146478E-6 evalInputDelta=0.0
Armijo: th(0.02949610717738317)=-71.31610123700145; dx=-1.1801621566325495E-6 evalInputDelta=0.0
WOLFE (weak): th(0.029495913289871323)=-71.31610123700145; dx=-1.1799440933153547E-6 evalInputDelta=0.0
mu ~= nu (0.029495913289871323): th(0.0)=-71.31610123700145
Fitness changed from -71.31610123700145 to -71.31610123700145
Static Iteration Total: 153.7596; Orientation: 0.1292; Line Search: 142.2011
Iteration 2 failed. Error: -71.31610123700145
Previous Error: 0.0 -> -71.31610123700145
Optimization terminated 2
Final threshold in iteration 2: -71.31610123700145 (> -Infinity) after 325.248s (< 5400.000s)

Returns

    -71.31610123700145