TextureTiledRotor.scala:79 executed in 0.00 seconds (0.000 gc):

    () => {
      implicit val implicitLog = log
      // First, basic configuration so we publish to our s3 site
      if (Option(s3bucket).filter(!_.isEmpty).isDefined) {
        log.setArchiveHome(URI.create(s"s3://$s3bucket/$className/${log.getId}/"))
        log.onComplete(() => upload(log): Unit)
      }
      ImageArtUtil.loadImages(log, styleUrl, (maxResolution * Math.sqrt(magnification)).toInt)
        .foreach(img => log.p(log.jpg(img, "Input Style")))
      (1 to repeat).map(_ => {
        val canvas = new RefAtomicReference[Tensor](null)
  
        def rotatedCanvas = {
          var input = canvas.get()
          if (null == input) input else {
            val viewLayer = getKaleidoscope(input.getDimensions)
            val result = viewLayer.eval(input)
            viewLayer.freeRef()
            val data = result.getData
            result.freeRef()
            val tensor = data.get(0)
            data.freeRef()
            tensor
          }
        }
  
        // Generates a pretiled image (e.g. 3x3) to display
        def tiledCanvas = {
          var input = rotatedCanvas
          if (null == input) input else {
            val layer = new ImgTileAssemblyLayer(rowsAndCols, rowsAndCols)
            val result = layer.eval((1 to (rowsAndCols * rowsAndCols)).map(_ => input.addRef()): _*)
            layer.freeRef()
            input.freeRef()
            val data = result.getData
            result.freeRef()
            val tensor = data.get(0)
            data.freeRef()
            tensor
          }
        }
  
        // Kaleidoscope+Tiling layer used by the optimization engine.
        // Expands the canvas by a small amount, using tile wrap to draw in the expanded boundary.
        def viewLayer(dims: Seq[Int]) = {
          val rotor = getKaleidoscope(dims.toArray)
          val paddingX = Math.min(max_padding, Math.max(min_padding, dims(0) * border_factor)).toInt
          val paddingY = Math.min(max_padding, Math.max(min_padding, dims(1) * border_factor)).toInt
          val tiling = new ImgViewLayer(dims(0) + paddingX, dims(1) + paddingY, true)
          tiling.setOffsetX(-paddingX / 2)
          tiling.setOffsetY(-paddingY / 2)
          rotor.add(tiling).freeRef()
          rotor
        }
  
        // Execute the main process while registered with the site index
        val registration = registerWithIndexJPG(() => tiledCanvas)
        try {
          // Display a pre-tiled image inside the report itself
          withMonitoredJpg(() => {
            val tiledCanvas1 = tiledCanvas
            val toImage = tiledCanvas1.toImage
            tiledCanvas1.freeRef()
            toImage
          }) {
            // Display an additional, non-tiled image of the canvas
            withMonitoredJpg(() => Option(rotatedCanvas).map(tensor => {
              val image = tensor.toRgbImage
              tensor.freeRef()
              image
            }).orNull) {
              log.subreport("Painting", (sub: NotebookOutput) => {
                paint(
                  contentUrl = initUrl,
                  initUrl = initUrl,
                  canvas = canvas.addRef(),
                  network = getStyle(viewLayer _),
                  optimizer = new BasicOptimizer {
                    override val trainingMinutes: Int = 90
                    override val trainingIterations: Int = iterations
                    override val maxRate = 1e9
  
                    override def trustRegion(layer: Layer): TrustRegion = null
  
                    override def renderingNetwork(dims: Seq[Int]) = getKaleidoscope(dims.toArray)
                  },
                  aspect = Option(aspectRatio),
                  resolutions = new GeometricSequence {
                    override val min: Double = minResolution
                    override val max: Double = maxResolution
                    override val steps = TextureTiledRotor.this.steps
                  }.toStream.map(_.round.toDouble))(sub)
                null
              })
              uploadAsync(log)
            }(log)
          }
          canvas.get()
        } finally {
          registration.foreach(_.stop()(s3client, ec2client))
        }
      })
    }

Returns

    { }

Input Style

Subreport: Painting